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Abstract. We extend our previous one-dimensional Ginzburg–Landau calculations of the
pinning energy of vortices to two dimensions, in order to achieve an understanding of the
pinning forces exerted on vortices by defects. By minimizing the free energy using a relaxation
scheme, we obtain the spatial variation of the order parameter and supercurrents for a vortex
in the vicinity of a cylindrical defect in an extreme type-II superconductor. The resulting two-
dimensional field distributions provide a direct mapping of the spatial dependence of the vortex–
defect pinning potential, thereby yielding the pinning force and depinning current as a function
of the defect size and magnetic field. We also use periodic boundary conditions in the two-
dimensional Ginzburg–Landau equations to solve for the known vortex–vortex interaction, in
order to verify the resolution and accuracy of our approach for extreme type-II superconductors.
Our direct numerical derivation of the pinning force per vortex is shown to be applicable to
a wide range of magnetic fields and columnar-defect densities, and the calculated results are
consistent with experimental observation.

1. Introduction

Columnar defects with radii comparable to the superconducting coherence length have been
shown to be efficient pinning sites for vortices in type-II superconductors [1–4]. The effects
of columnar defects on the enhancement of the critical current densityJc [5, 6], and the
increase of the vortex phase transition temperature [7] and the onset temperature (Tirr )
for vortex pinning, are of both fundamental interest and practical importance. It has been
observed recently that in both YBa2Cu3O7 and Bi2Sr2CaCu2O8 single crystals, there is a
maximum density of heavy-ion-irradiated columnar defects above which no further increase
of Jc or Tirr can take place [8]. Although there are phenomenological descriptions for the
interaction between vortices and the columnar defects which are extended static disorder,
and an upper bound for the benefit of introducing columnar defects is believed to exist [8],
direct theoretical verification of these issues is still lacking. This situation is in contrast to
the establishment of microscopic vortex–pin interaction based on the Gorkov theory [9, 10]
for the presence of random point disorder.

We have recently performed calculations for the interaction between vortices and
columnar defects by solving the one-dimensional Ginzburg–Landau equations in a
cylindrically symmetric system [11], and have derived the pinning potential and depinning
temperature as functions of the defect size and defect conductivity. In this work we extend
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our previous one-dimensional model to two dimensions, in order to map out the spatial
variation of the pinning potential and to obtain the corresponding pinning force per unit
length (fpin) and the depinning critical current density (Jc). Our numerical integration using
a relaxation scheme [12] yields a detailed description of the behaviour of the order parameter
and supercurrents near a columnar defect, and thus a fundamental scheme for calculating
the spatial variation of the vortex–defect pinning potential. In contrast to phenomenological
analyses of the vortex–pin interaction [6] which are only concerned with the changes in the
potential energy due to the presence of columnar defects, our calculations go beyond the
geometric considerations by explicitly including both the kinetic and potential energies of
the vortex–pin system. In addition, our two-dimensional calculations allow a quantitative
study of the interplay between vortex–vortex interactions and vortex–defect interactions on
the microscopic scale, which has not been addressed in most numerical simulations carried
out by other research groups [12–16]. More specifically, the effect of defects on the pinning
of vortices is often described in terms of a ‘disorder parameter’γ , defined as [6]

γ ≡ f 2
pinniξ

2 (1)

whereni is the volume density of pinning defects. Various important physical properties
associated with the vortex–pin interaction, such as the critical current density, depinning
temperature, and vortex correlation lengths, can be determined ifγ is known [6]. In
contrast to most numerical calculations whichassumethe pinning forcefpin and the disorder
parameterγ , our approach directlycalculatesthe quantityfpin by using the two-dimensional
Ginzburg–Landau equations and proper boundary conditions.

This paper is structured as follows. Section 2 describes the numerical method used to
set up and compute the physical problems of the two-dimensional vortex–pin interaction;
section 3 presents the results of the calculations, discusses the applicability and limitations
of the model, and compares our results with those obtained by other research groups and
with experiments; and section 4 summarizes the key findings and some feasible extension
of this work.

2. Methods and justifications

We shall limit ourselves to studies of extreme type-II superconductors such as the high-
temperature superconductors whose Ginzburg–Landau parameterκ is very large. We
shall also limit ourselves to large applied fieldsHa, so that the magnetization of the
superconductor is nearly zero. Hence, it is a good approximation to assume that the magnetic
inductionB is constant everywhere in the superconductor. Under such approximations, the
relevant free-energy density (F ), expressed in terms of the superconducting order parameter
9 and the vector potentialA, becomes

F = H 2
c

8π

( |9|4
|9∞|4 − 2

|9|2
|9∞|2 + 2ξ2

∣∣∣∣(∇i − e∗

h̄c
A

)
9

|9∞|
∣∣∣∣2) (2)

where9∞ is the order parameter in an infinite sample,Hc is the thermodynamic critical
field, andξ is the superconducting coherence length.

Rather than using this expression to derive the Ginzburg–Landau equations via the
variational principle, we will minimize the free energy directly, by relaxing the energy
iteratively to its minimum value. To do this, we will evaluate the free energy on a uniform
grid, with a spacing between points given byξ/nξ , wherenξ is the number of grid points
in one coherence length. The length scale used in this paper will be given in units of the
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quantity

d ≡ 2
√
80/(πHa)

which is the distance between neighbouring circular cells, defined in reference [11] and
to be described in more detail below, and is approximately equal to the Abrikosov vortex
lattice constant. Here80 is the flux quantum, andHa is the applied magnetic field. We
will also use the reduced units in which magnetic fields are measured in units of

√
2Hc,

andf ≡ 9/|9∞|. Thus, the free energy may be rewritten as follows:

F = 1

16π
(|f |4− 2|f |2+ 2n2

ξ |(i∇+A)f |2). (3)

Note that in terms of the vector potential used in equation (2), the new vector potential in
equation (3) isA = [2πξ/(nξ80)]A. Equation (3) is now easily discretized in a gauge-
invariant form and then minimized, lattice point by lattice point. We do so iteratively to
solve for the spatial variation of the complex order parameter.

As in reference [11], we will at first limit ourselves to circular cells. The range of
validity of this approximation has been discussed previously [11], and may be briefly
summarized as follows. First, both the defect sizea and the superconducting coherence
length ξ must be much smaller than the vortex–vortex separationd (a, ξ � d). Second,
the defect distribution has to be either regular or commensurate with the vortex lattice, or
completely random and satisfying one of the conditionsHa � Bφ andHa � Bφ , where
Bφ ≡ 80nφ is the matching field, withnφ being the areal density of columnar defects. In
most of the following calculations of the vortex–defect interaction, we shall focus on the
two-dimensional solutions in the circular-cell approximation. In section 3.5, an alternative
approach using periodic boundary conditions will be employed for the two-dimensional
vortex lattice in the absence of defects.

We solve the two-dimensional circular-cell problem by considering the following
boundary conditions: first, the magnitude of the order parameter is assumed to be the same
around the outer periphery of a cell, and is so chosen that the total energy is minimized.
(Usually, it will be accurate enough to simply takef = 1.) The phase around the outer
periphery is assumed to vary continuously from 0 to 2nπ , wheren is the number of vortices
inside the circular cell. Thus, the outer boundary conditions ensure no preferable direction
from the origin. We also note that under the given boundary conditions, the vortices exterior
to the boundary (outside the region of integration) are always effectively pinned. Such
constraints are an adequate approximation of the vortex system ifHa 6 Bφ , i.e. as long as
there are enough pinning sites for all of the vortices. In the limitHa � Bφ , on the other
hand, our numerical solutions to the single-vortex and single-pin scheme are only applicable
if we consider the following correction to the pinning force: at low temperatures and for
Ha � Bφ , columnar defects yield effectively two-dimensional collective pinning effects on
vortices [6], and the critical current density (J 2D

c ) in the two-dimensional collective pinning
regime is approximately given byJ 2D

c ≈ jpc(d/Rc) [6], where jpc is the planar critical
current density, andRc is the two-dimensional collective pinning length [6]. Hence, it can
be shown that

J 2D
c

J0
≈ 4γ d2

ε2
0dc
∝
(
nφ

Ha

)
f 2
pin (4)

whereJ0 ≡ cHc/(3
√

6πλ) is the depairing current density [6],ε0 ≡ 82
0/(4πλ)

2, anddc
is thec-axis lattice constant of the cuprate superconductor. Equation (4) predicts a critical
current density that increases with the increasing areal defect densitynφ , and decreases with
the increasing applied magnetic fieldHa [6], consistently with the experimental finding for
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Figure 1. The spatial variation of the order parameter as a function of the current, for
Ha = 2

√
2Hc anda = ξ . The four frames correspond toJ = 0, J = 0.22J0, andJ = 0.44J0

just before and after depinning occurs. The white area corresponds to an amplitude of the order
parameterf near 1. The darker the shading, the closer the amplitude is to 0.

Ha � Bφ . In the following calculations, we shall concern ourselves with the numerical
solutions to the problem of one defect and one vortex per cell. We have discussed how the
calculated results forfpin may be applied to the vortex–pin interaction over a wide range
of magnetic fields.

As stated previously, the areaS of each cell is determined by the applied magnetic field
Ha, such thatS = n80/Ha. To investigate the effect of an external transport current on the
pinned vortices (at least for sufficiently small currents), we assume that both the applied
field and columnar defects are aligned along thez-axis, and a uniform current is imposed
crossing the cell and moving vertically along theŷ-axis (see figure 1). This requirement can
be achieved by adding a term to the phase of the order parameter on the outer boundary,
given by

1φ = − Jy

(3/2)
√

3|f |2 (5)

whereJ is a current density measured in units of the depairing current densityJ0 [6].
Finally, we can treat any number of defects on the inside of the integration region

using boundary conditions given by de Gennes for a bulk-superconductor–bulk-normal-
metal interface [17]:(

h̄

i
∇− e

∗

c
A

)
9|n = i h̄

b
9. (6)
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Here 1/b is a real proportionality constant and has the dimensions of inverse distance.
As shown by de Gennes [17], for a superconductor/insulator (or vacuum) interface, the
parameter 1/b can be taken as zero, implying no current flowing normal to the boundary
between a columnar defect and the surrounding superconducting material. We shall take
this limit because the columnar defects induced by high-energy heavy ions are known to
be insulating [1]. In addition, we will also limit ourselves to the large-κ, high-Ha case in
which the magnetization is zero andB = Ha = constant everywhere.

3. Results and discussion

3.1. The pinning force derived from an applied current

We consider a defect at the centre of the circular region, and let the outer boundary dictate
the position of one vortex. This condition effectively simulates the situation ofHa = Bφ for
a regular distribution of columnar defects. As stated in the previous section, the effective
pinning force per vortex per length derived for this special case may be generalized to the
situation of randomly distributed columnar defects with eitherHa < Bφ or Ha � Bφ .

The minimum-energy requirement in the absence of an applied current will place the
vortex at the centre, where the defect is. If a net current crossing the cell is added to
the system, as described according to the outer boundary condition given by equation (5),
we may study the evolution of the solution as the current is slowly increased. The spatial
variation of the order parameter as a function of current is shown in figure 1, while the
position of the vortex, measured radially from the centre of the cell and defined as the place
where the order parameter is zero, as a function of the applied current and for different
defect sizes, is plotted in figure 2.

We note that in the absence of pinning defects, vortices will be displaced linearly with
the applied currents, at least for sufficiently small vortex displacements from the centre of
the cell, as illustrated in figure 2. For large applied currents, on the other hand, vortex
displacement no longer increases linearly with the applied currentJ . This deviation from
linearity in the large-current limit (see figure 2) is the result of two contributing factors.
One is due to the assumption of pinned vortices exterior to the circular cell, which gives
rise to a net force on the vortex within the cell if the vortex is displaced away from the
centre. The other is the constant phase on the outer boundary, which prevents the inner
vortex from leaving the cell under any applied currents. In other words, in the absence of
any defects in the circular cell, we are solving for a static solution in which two forces on
the inner vortex balance each other: the Lorentz force due to the applied current, and the
net pinning force exerted by the external vortices when a Lorentz force is applied to both
the interior vortex and the effectively pinned exterior vortices.

In the presence of a columnar defect, an additional attractive pinning force due to the
vortex–pin interaction must be considered, and figures 1 and 2 show that the vortex remains
pinned by the defect up to a critical currentJc. Once this critical current is reached, the
vortex is suddenly depinned and jumps towards the cell boundary where the presence of
the surrounding stationary vortices prevents it from moving out further. Once the vortex
is depinned, we find that the existence of the defect inside the cell is no longer relevant.
In other words, for sufficiently strong currents, the position of the vortex only depends on
the configuration of the surrounding vortices, independently of the existence of the defect
inside the cell, as manifested by the merging curves in figure 2 for different defect radii
in the large-current limit. We also note that the critical current densityJc increases with
increasing defect radiusa, provided that the defect size is comparable to the coherence
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length. This finding is consistent with our previous one-dimensional numerical calculations
[11]. However, our calculations suggest that the increase inJc with the defect radiusa
is substantially smaller than the phenomenological estimate in reference [6] which asserts
that Jc ∝ a2. This discrepancy may be attributed to an overestimate of the pinning energy
in the latter, where the simple geometric consideration of the potential energy [6] does not
take into consideration the increasing kinetic energy associated with the larger supercurrents
required to screen the increasing magnetic flux in a larger columnar defect. The increasing
kinetic energy reduces the effective pinning potential energy gained by enlarging the defect
radius.
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Figure 2. The vortex position relative to the centre of the cell as a function of the applied
current, forHa = 2

√
2Hc. The curves correspond to no pinning defect, a defect witha = 0.5ξ ,

and a defect witha = ξ . The centre of the vortex remains inside the defect until the current is
strong enough to completely depin the vortex. The depinning current fora = 0.5ξ is consistent
with experimental estimates [2].
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ŷ
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Figure 3. The spatial variation of the order parameter as a function of the defect displacement,
for Ha = 2

√
2Hc anda = ξ . The four frames correspond to no displacement, displacements of

4.5 and 4.6 coherence lengths (just before and after depinning occurs), and a displacement of
almost 7 coherence lengths, respectively. As in figure 1, the shading is lighter for amplitudes
nearer zero.

3.2. The spatial variation of the vortex–defect pinning potential well

An alternative ‘numerical experiment’ is to depin the vortex by ‘displacing’ the defect, rather
than by forcing the pinned vortex with an applied current. With increasing displacement
of the defect, the outer boundary, representing the presence of nearby and strongly pinned
vortices, competes with the pinning strength of the inner columnar defect, and eventually
‘depins’ the vortex from the columnar defect as the latter moves too close to the boundary.
Once depinned, the inner vortex will be kept centred due to the energy considerations. A
sample solution withHa = 2 anda = 1.0 is shown in figure 3, and the corresponding
energy densities for various configurations of the defect displacement are shown in figure 4.
We note that there is an energy cost involved in displacing the defect away from the centre.
As illustrated in figure 4, a rapid increase in energy accompanies the defect displacement,
and this is followed by a much more gradual increase in energy after the vortex becomes
depinned from the defect. The depth of the energy difference yields an effective pinning
potential. This effective pinning potential contains predominantly the effect of the vortex–
defect interaction, as well as the net interactions of the surrounding vortices, represented by
the outer boundary, with the inner vortex. We note that the latter contributions are much
smaller than the former, as manifested by the much smaller increase in energy after the
inner vortex is depinned (see figure 4). As a result, we obtain a more accurate estimate of
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Figure 4. The energy per vortex line as a function of the defect displacement, forHa = 2
√

2Hc
anda = ξ .

the depinning force by taking the slope of the effective potential energy—the contribution
due to the surrounding vortices will be smaller than for the values obtained from figure 2.
We also find that the depth of the pinning potential is the same as that calculated previously
using our one-dimensional model [11].

3.3. Estimation of the depinning current

As discussed earlier, the critical currentsJc obtained from figure 2 may be used to estimate
the pinning force from a defect, although corrections are obviously needed: theJc-values
are overestimated since the outer boundary conditions artificially increase the total pinning
strength. Indeed, in our solutions, the Lorentz force exerted by the applied current is
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balanced both by the pinning force due to the defect and by the repulsion from the
surrounding vortices. As stated earlier in this article, better estimates ofJc may be obtained
if we calculate the derivative of the energy relative to the defect displacement in figure
4, because the approach given in figure 4 compares the energy difference among various
vortex–pin configurations, which effectively cancels the excess force from the assumption
of completely pinned vortices exterior to the cell under consideration. A third possibility
for estimatingJc is to simply record the defect position for which depinning occurs, and
then determine what current is necessary to bring a free vortex to that position, using the
dependence of the vortex displacement on the applied current given by the ‘no-defect’ curve
in figure 2. The corresponding Lorentz force due to that current will be taken as equivalent
to the pinning force. However, the pinning force thus derived arises from both the outer
boundary and the defect, similarly to in the first method described earlier. Hence, we expect
the pinning force to be overestimated using the third method.

For comparison, the pinning force per unit lengthfpin from the scheme illustrated in
figure 2 is explicitly given by

fpin

H 2
c ξ
= J

J0

2

3
√

3
. (7)

Similarly, from the maximum slopes of the potential energy curve in figure 4, we have
(wheres is expressed in our dimensionless units)

fpin

H 2
c ξ
= 2s. (8)

Table 1. The depinning force, calculated from the depinning current obtained from figure 2,
and calculated from the effective potential well in figure 4.Ha is measured in units of

√
2Hc,

the cell radiusa in units of ξ , and the force in units ofH 2
c ξ . Due to the coarse sampling, the

values are only accurate to about 0.01.

Vortex–defect pinning force

Calculated from Calculated from Calculated from

Magnetic field displacement– effective location of defect

and defect size current curve potential well at depinning Blatteret al [6]

Ha = 2 a = 0.25 0.03 0.01 0.05 0.003 57
a = 0.5 0.08 0.04 0.08 0.0143
a = 0.75 0.14 0.09 0.12 0.0323
a = 1.0 0.17 0.10 0.15 0.0572

Ha = 5 a = 0.25 0.05 0.03 0.10 0.003 57
a = 0.5 0.13 0.11 0.13 0.0143
a = 0.75 0.20 0.17 0.21 0.0323
a = 1.0 0.26 0.24 0.27 0.0572

The values of the pinning forces obtained using all three schemes are tabulated in
table 1. The resulting pinning forces have the same order of magnitude in all three
cases. Furthermore, we note that the first and third approximations, both involving current-
induced depinning, yield comparable pinning forces which are larger than those obtained
from considering the spatial variation in the pinning potential alone. These discrepancies
may be explained by the enhancement of pinning due to the increasing inner-vortex and
outer-vortex interactions. This discrepancy cannot be easily removed due to the inherently
nonlinear nature of the problem. However, we note that the discrepancy becomes smaller
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with increasing matching field and larger defect radius, as shown in table 1. This better
agreement among all three schemes may be attributed to the stronger pinning strength
for larger matching field and larger defect size (figure 5), which makes the underlying
assumption in the first scheme, that all vortices exterior to the cell be pinned, closer to
reality.
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c2  ξ
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1.000.750.500.250.00

a (ξ)

Ha = 5
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f pi
n 

(H
c2  ξ

)

1.000.750.500.250.00

a (ξ)

 from displacement-current curve
 from effective potential well
 from location of defect at depinning
 Blatter et al. [4]

Ha = 2

Figure 5. A comparison of the pinning forcefpin derived from various approaches described
in the text as a function of the defect radius (a) and the applied magnetic fieldHa .

The above discussions consistently suggest that the magnitude offpin obtained from
the spatial variation of the pinning potential (figure 4) is more accurate, particularly in
the smaller-Bφ or smaller-a limit. It is also interesting to note in table 1 that the pinning
force per vortex increases with increasing magnetic field, provided thatHa 6 Bφ . This
seemingly surprising result is in fact due to the increasing areal density of columnar defects
and the increasing vortex–vortex interaction with increasing magnetic fields, and hence the
larger pinning force on vortices caused by columnar defects. We also remark that the
magnetic field dependences for the first and second schemes are approximatelyfpin ∼ Ha
and fpin ∼

√
Ha, respectively, as shown in table 1. In the opposite limitHa � Bφ and

for randomly distributed columnar defects, the vortex–pin interaction becomes equivalent
to a two-dimensional collective pinning problem [6]. As stated earlier, the critical current
densityJ 2D

c may be given by equation (4), provided that thefpin-values obtained in our
numerical calcuations are inserted into equation (4). Furthermore, we note that according to
equation (4)J 2D

c increases with increasing matching fieldBφ and decreases with increasing
applied magnetic fieldHa, which is qualitatively consistent with experiments [1–4].

The analysis above thus allows us to compare the relative strengths of the forces
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involved, and by solving the problem for lower magnetic fields where our approximation
is justified, allows us to isolate the net contribution of the vortex–defect interaction to the
pinning force. These calculations forHa 6 Bφ can be further extended to the high-field
limit Ha � Bφ . It is worth noting that in addition to the qualitative agreement of our
calculations with the experimental dependences ofJc onHa andBφ , the magnitude of the
empirical critical current densities [2–4] also agrees well with our calculatedJc-values for
smaller defects with radiia 6 0.5, measured in units of the coherence lengthξ .

For further comparison, Blatteret al [6] estimate a depinning current based on the
consideration of the single-vortex potential energy alone, and they find [6]

Jc = 27
√

2

64

(
a

2ξ

)2

J0 ' 0.15

(
a

ξ

)2

J0. (9)

Equivalently, the depinning force per unit length obtained by such consideration yields [6]

fpin

H 2
c ξ
= 3
√

6

32

(
a

2ξ

)2

' 0.06

(
a

ξ

)2

. (10)

These estimates are in general smaller than ours by a factor of about 2 to 3 for the case
of Ha = 2, and by about one order of magnitude for the case ofHa = 5. (See figure 5.)
Furthermore, the result by Blatteret al predicts a stronger dependence offpin on the defect
size than ours; i.e.,fpin ∝ a2 according to equation (10), in contrast to our numerical results
of fpin ∼ a, as shown in figure 5. We note that the approach given in equations (9) and
(10) by Blatteret al [6] does not reflect the important enhancement ofJc with largerBφ
and with increasing vortex–vortex interactions. Furthermore, neglecting the kinetic energy
contribution from the supercurrents in reference [6] also contributes to the discrepancies
between theirJc-values and ours. This comparison therefore underscores the importance of
considering the full solutions to the Ginzburg–Landau equations for better understanding of
the vortex–pin interaction.

3.4. Comparison with other numerical calculations

Next, we compare the results in this work with other numerical calculations of vortex–
pin interactions [13–15]. Machida and Kaburaki [13] and the research group at Argonne
[14, 15] have considered the interaction of two-dimensional vortices with random defects
by solving the time-dependent Ginzburg–Landau equations. However, the calculations are
limited to relatively coarse grids and low values ofκ (between 2 and 4), and therefore
are not quantitatively representative of the properties of high-temperature superconductors.
In addition, unlike our approach of considering the microscopic vortex–pin interaction
with proper boundary conditions, the effects of defects and the resulting spatial variations
of the pinning potential in references [13–15] have been assumed, rather than obtained
directly from the Ginzburg–Landau equations and proper boundary conditions. While
those calculations have the advantage of allowing qualitative studies of many-vortex
dynamics, those results do not provide quantitative descriptions for the microscopic vortex–
pin interaction of a single vortex and single defect, nor do they provide direct and accurate
estimates for the critical current densities.

Recently, Reichhardtet al have considered the current-driven vortex dynamics in
the presence of periodic pinning sites [16]. The approach considers the overdamped
vortex equation of motion, and, as in most other numerical calculations [13–15], assumes
given vortex–vortex and vortex–pin interactions, rather than directly solving the two-
dimensional Ginzburg–Landau equations for the vortex–pin interactions and the spatial
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variations of the superconducting order parameter. Nonetheless, the molecular dynamics
simulations allow collective behaviour of vortices, such as novel plastic-flow phases which
are uniquely associated with the periodic structure of pinning sites, to be revealed. Since
the approximation involved in our calculations is generally valid for regular pinning sites, as
stated previously in section 2, it would be interesting in the future to incorporate the pinning
force fpin and the spatial variations of the pinning potential derived from our calculations
into the macroscopic studies of vortex dynamics.

3.5. Consideration of periodic boundary conditions

Finally, we consider solutions to the two-dimensional Ginzburg–Landau equations with
periodic boundary conditions inside a rectangle. This approach is in contrast to the
calculations outlined in sections 2 and 3.1 to 3.4, where boundary conditions for a circular
cell have been assumed. We shall only consider the solutions in the absence of applied
currents, since the presence of applied currents breaks the translational invariance required
for imposing the periodic boundary conditions. Since we have demonstrated the applicability
of the circular-cell solutions to a wide range of magnetic fields, the following numerical
work is only to verify the energy resolution and accuracy of our calculation scheme. In
other words, we show below that even in the extreme type-II limit withκ � 1, we are still
able to resolve the small energy difference between the triangular and the square vortex
lattices, and to obtain the small spatial variations in the order parameter and supercurrent
distribution.

The solutions are obtained by using the same relaxation scheme as for the circular cells.
The only difference is that the values at the boundaries are obtained from the solution on
the opposite side of a rectangle with a heighth along theŷ-axis and a widthw along the
x̂-axis. For simplicity, we use the gauge in whichAx = 0, and assume that the rectangle
is perpendicular to the magnetic field, and the vector potential is parallel to theŷ-axis. For
points on the top (y = h) or bottom (y = 0) boundary, the values for the order parameter
and for the vector potentialAy at a givenx-coordinate are the same. In contrast, for points
on the left-hand (x = 0) or right-hand (x = w) boundary, we need to adjust the phase of
the order parameter and the magnitude of the vector potential. That is,

f (x = w) = f (x = 0)eiHawy

and

Ay(x = w) = Ay(x = 0)+Haw
where the coordinatesx andy are both expressed in our dimensionless units. We note that
these boundary conditions are similar to those used by Doriaet al in their Monte Carlo
solutions to the Ginzburg–Landau equations [18].

The width of the rectangles used to tile the periodic solution of the vortex system is
determined by the symmetry of the vortex lattice. It must be consistent with the number of
vortices per lattice cell. For a square vortex lattice, we may take, for example,n = 1 or
n = 2 vortices per cell, and use a cell width

w = 2
√
πn/(2Ha).

For a triangular vortex lattice, we need at leastn = 2 vortices per lattice cell, and the width
becomes

w = (2/31/4)
√
πn/(2Ha)

whereas the height of the rectangle must be kept ath = √3w.
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ŷ

x̂

Figure 6. A comparison between square and triangular lattices of vortices forHa = 2
√

2Hc and
κ = 70. The free-energy difference per vortex (as calculated in the text) is less than one part
in a thousand. Both the square and triangular lattices were obtained by tiling the solutions for
n = 2 vortices in square and rectangular cells, respectively. The top plot for each vortex lattice
structure shows the amplitude of the order parameter, and the bottom plot the current flow (at
a different scale).

Two sample (tiled) solutions using realistic parameters for high-temperature super-
conductors are shown in figure 6. As before, the energy can be calculated for both the
square and triangular arrangements. The well known result that the energy is lower for the
triangular array is obtained [19], even though the energy difference is very small due to the
extreme type-II nature of the superconductor: forHa = 2

√
2Hc andκ = 70, the free-energy

difference per vortex between the square and the triangular lattices isless than one part in
103. The scheme presented here allows us to study the energy of the vortex lattice as the
angle between the lattice unit vectors changes from 90◦ (square lattice) to 60◦ (triangular
lattice). Hence, we have verified the resolution and accuracy of our numerical calculations.
Furthermore, the field-induced supercurrent distribution, as illustrated in figure 6, and the
spatial variations of the magnetic induction (not shown), are deduced from this numerical
approach.
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4. Conclusion

We have studied the interaction between a vortex and a columnar defect by directly solving
the two-dimensional Ginzburg–Landau equations, with two different methods for deducing
the pinning force: one involves imposing an external current, and the other considers the
spatial variations of the pinning potential. Our numerical results using realistic material
parameters for high-temperature superconductors are found to yield better descriptions for
the experimental critical current densities than other theoretical work based solely on the
phenomenological approach, both in terms of the magnitude and in terms of the dependences
on applied magnetic fieldHa and areal density of columnar defectsnφ : we find that the
critical current densityJc increases with the increasing defect sizea and the matching field
Bφ for all Ha, and thatJc decreases linearly with increasingHa for Ha � Bφ . These
results are direct solutions of the two-dimensional Ginzburg–Landau equations, without any
assumptions as regards the spatial variations in the pinning potential.

The model presented here is quite versatile, and may be extended to studies of the
interaction between multiple vortices and defects. For instance, knowing the disorder
parameterγ , many useful physical quantities, such as the transverse vortex correlation
lengthRc ≈ ε0(ξ/4d)(dc/γ )1/2, may be obtained following the prescriptions in reference
[6]. Alternatively, these quantities may bederived from direct numerical calculations by
considering explicitly a cell with one defect andN vortices, whereN � 1. Many other
related ‘numerical experiments’ can be devised, but care must be taken in analysing the
results in order to relate them to real experimental conditions.

We have also demonstrated that the numerical approach undertaken in this work provides
sufficient energetic resolution to distinguish clearly the small energy difference between the
configurations of triangular and square lattices, even under the extreme type-II condition.
This verification indicates that our numerical schemes are quantitatively reliable. We note
that all of the calculations presented in this work were done on a personal computer, and
thus they can be easily extended to large systems, higher dimensionality, more complex
boundary conditions, etc, with a more powerful computing system. Finally, it will be
interesting to generalize our numerical approach to incorporate both the s-wave and d-wave
components of the order parameter in the Ginzburg–Landau equations [20], so that the
vortex–pin interactions in d-wave superconductors may be compared with those obtained in
s-wave superconductors.
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